RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2016

CHEMISTRY [Honours]

THIRD YEAR [BATCH 2014-17]

Date : 19/12/2016

: 11 am –1 pm

Time

Paper : V [Group-B]

Full Marks : 50

[Attempt one question from each Unit]

<u>Unit – I</u>

[12 marks]

[1]

[3×2]

[2]

- 1. a) Draw the preferred conformation of 1-methyl-1-phenyl cyclohexane and justify your answer. [2]
 - b) Indicate the symmetry elements present in boat conformer of cyclohexane.
 - c) Explain the effect of heat on the diastereomers of 4-hydroxycyclohexane carboxylic acid. [2]
 - d) Complete the following reaction with proper explanation.

- e) Draw the most stable conformation of trans-1, 3-ditertiarybutylcyclohexane. [1]
- 2. a) Comment on the optical activity of *cis*-1, 2-dimethylcyclohexane. [2]

 b) Explain the following observations : Cyclohexane *cis*-1, 2-diol is cleaved by lead tetraacetate about 22 times faster than its *trans*isomer.

c) Predict the product(s) in each of the following reactions with plausible mechanism in each case. T [3+3+2]

3. a) Give retrosynthetic analysis and an efficient synthesis of the following compounds : [3+3]

i) Ph CO_2Et

- ii) $CH_3 CH_2 CH_2 CH_3$
- [2]

[2]

[3]

- b) Isoelectric point of glycine is 6.0 but that of aspartic acid it is 3.0. Explain.
- c) Describe the synthesis of tyrosine applying Erlenmeyer azlactone synthesis.
- d) Predict the product of the following reaction. Give mechanism.

- a) During deprotection of benzyloxycarbonyl group from a. N-protected peptide, usually 4. additives like anisole or dimethyl sulphide is used. Explain the role of these additives.
 - b) Synthesise Ala-Phe-Gly using solid phase peptide synthesis method.
 - Outline the total synthesis of the following compounds showing retrosynthetic analysis. c)

Carry out the following conversion : d)

- a) Which of the following is/are NMR active? Give reason. 14 N, 12 C, 31 P, 17 O. 5.
 - b) An aqueous solution of *p*-nitrophenol exhibits peak at λ_{max} 317nm. Explain what change in peak position is expected if the above solution is made alkaline. [2]
 - How would you distinguish between the members of the following pairs of compounds? (any two) [2+2] c)
 - δ -lactone and γ -lactone (by IR) i)
 - ii) *O*-dichlorobenzene and *p*-dichlorobenzene (by PMR)
 - iii) Meso and *dl*-butane-2, 3-diol (by IR)
 - d) Explain the following observations : [2] 2-Hydroxy-5-nitroacetophenone shows two carbonyl stretching frequencies at 1692 and 1658 cm⁻¹.
 - e) The $n \rightarrow \pi^*$ transition in UV is a forbidden transition. Suggest reason for forbiddenness.
- Why is TMS used as reference compound for ¹HNMR spectrum? 6. a)
 - The UV spectrum of methyl vinyl ketone shows λ_{max} at 219 nm and 324 nm. Using the b) principle of solvent dependence of λ_{max} value, how can you determine which peak is due to $\pi \rightarrow \pi^*$ transition and which is due to $n \rightarrow \pi^*$ transition?
 - A compound having molecular formula $C_8H_8O_2$ shows strong absorption at 1700 cm⁻¹ in IR c) and ¹HNMR shows the following signals : $\delta 9.9(1H,S)$, $\delta 7.8(2H,D,J=8Hz)$, $\delta 7 \cdot 2(2H, D, J = 8Hz)$ and $\delta 3 \cdot 9(3H, S)$ Deduce the structure.
 - How can you distinguish between the given pairs, by d)

i)
$$O$$
 and O (UV) ii) O Ph and Ph O (IR)
Unit – IV

[13 marks]

- 7. a) Explain the following statements :
 - i) Furan is an enol ether.
 - ii) Pyrole undergoes electrophilic substitution faster than furan.
 - b) Explain why 9,10-positions of anthracene are more susceptable to electrophilic attack.
 - Explain why pyrrole-2-aldehyde does not undergo benzoin condensation but does so when c) mixed with furfural. [2] [5×1]
 - d) Predict the product of the following reactions.

[12 marks]

[2]

[2]

[2]

[3]

[2×3]

[2]

[2]

[3]

[3]

[2+2]

- - [2+2]

[2]

8. a) Outline the Bardhan-Sengupta synthesis of phenanthrene. [3]
b) Predict the product(s) of the following reactions with plausible mechanism. [3×2]

c) Write down the synthesis of chloroquine and mention one use of it.

_____ × _____

[3+1]